
CFGS DAM 3.4 Alternative synchronization techniques | Process and Service Programming

IES Doctor Balmis 1 / 5

3.4 Alternative synchronization techniques

PSP class notes (https://psp2dam.github.io/psp_sources) by Vicente Martínez is licensed under

CC BY-NC-SA 4.0 (http://creativecommons.org/licenses/by-nc-sa/4.0/?ref=chooser-v1)

https://psp2dam.github.io/psp_sources
http://creativecommons.org/licenses/by-nc-sa/4.0/?ref=chooser-v1

CFGS DAM 3.4 Alternative synchronization techniques | Process and Service Programming

IES Doctor Balmis 2 / 5

3.4 Alternative synchronization techniques
3.4.1. Semaphores
3.4.2. High level synchronization techniques

Concurrent Queues
Concurrent Collections
Atomic variables

3.4.3 Executors, Callables & Future

3.4.1. Semaphores

There are many other ways to synchronize threads, one of the low-level ones ar semaphores . A semaphore controls access to a

shared resource through the use of a counter. If the counter is greater than zero, then access is allowed. If it is zero, then access is
denied. What the counter is counting are permits that allow access to the shared resource. Thus, to access the resource, a thread
must be granted a permit from the semaphore.

java.util.concurrent.Semaphore
(https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/concurrent/Semaphore.html) specification.

Semaphores control access to critical sections where shared resources or variables are handled in a special way. Depending

on thi initial value of the semaphore, a number of concurrent threads can access simultaneously to a shared resource.

Semaphores can be manages with two methods and their initial value permits :

release(): When thread no longer needs access to a shared resource, it releases the permit, incrementing the semaphore count.
By default the semaphore counter permits is incremented by 1, though it can get a value and increment the count in that
value.
acquire(): If a thread needs to access a shared resource or critical section, then it must get control over the semaphore. If
semaphore count > 0, the thread acquires a permit, decrementing the semaphore’s count. Else, the thread is blocked until a
permit can be acquired. Other value than 1 can be used to get the semaphore, having permits to be bigger than that value

in order to get semaphore's control
permits: The value of a counting semaphore at any point indicates the maximum number of processes that can enter the
critical section at the exact same time. Each thread asks for a permit. if value is bigger than 0 that means free resources are
available, so the thread will enter the semaphore and reduce the permit count When the semaphore's permit count reaches to
0 that means no more shared resources are available and threads will be locked waiting for another thread to perform a
release action on the semaphore.

Let's take a look at this example

Mutex

Binary semaphore: A binary semaphore only takes only 0 and 1 as values and is used to implement mutual exclusion as
well as synchronize concurrent processes.

The work similar to synchronized, providing mutual exclusion.

public class Almacen {

 private final int MAX_LIMITE = 20;

 private int producto = 0;

java
1
2

3
4

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/concurrent/Semaphore.html

CFGS DAM 3.4 Alternative synchronization techniques | Process and Service Programming

IES Doctor Balmis 3 / 5

3.4.2. High level synchronization techniques

The java.util.concurrent package provides tools for creating concurrent applications. There are some thread-safe classes
que to use Collections and basic data types without worrying about concurrent access.

 private Semaphore productor = new Semaphore(MAX_LIMITE);

 private Semaphore consumidor = new Semaphore(0);
 private Semaphore mutex = new Semaphore(1);

 public void producir(String nombreProductor) {

 System.out.println(nombreProductor + " intentando almacenar un producto");
 try {

 // up to 20 producers can enter at the same time
 productor.acquire();

 // But only 1 (consumer/producer) at a time can update
 mutex.acquire();

 producto++;

 System.out.println(nombreProductor + " almacena un producto. "
 + "Almacén con " + producto + (producto > 1 ? " productos." : " producto."));

 mutex.release();

 Thread.sleep(500);

 } catch (InterruptedException ex) {
 Logger.getLogger(Almacen.class.getName()).log(Level.SEVERE, null, ex);

 } finally {
 // Producers allow (notify) consumers to access

 consumidor.release();
 }

 }

 public void consumir(String nombreConsumidor) {

 System.out.println(nombreConsumidor + " intentando retirar un producto");
 try {

 // A producer must be run first, before any consumer
 consumidor.acquire();

 // But only 1 (consumer/producer) at a time can update
 mutex.acquire();

 producto--;

 System.out.println(nombreConsumidor + " retira un producto. "
 + "Almacén con " + producto + (producto > 1 ? " productos." : " producto."));

 mutex.release();

 Thread.sleep(500);
 } catch (InterruptedException ex) {

 Logger.getLogger(Almacen.class.getName()).log(Level.SEVERE, null, ex);
 } finally {

 // Consumers allow (notify) producers to add more products
 productor.release();

 }

 }

}

5

6
7

8
9

10
11

12
13

14
15

16
17

18
19

20
21

22
23

24
25

26
27

28
29

30
31

32
33

34
35

36
37

38
39

40
41

42
43

44
45

46
47

48
49

50
51

52
53

54
55

56

CFGS DAM 3.4 Alternative synchronization techniques | Process and Service Programming

IES Doctor Balmis 4 / 5

Using these classes in our code we can reduce out apps complexity.

Concurrent Queues

The BlockingQueue interface defines a FIFO queue that locks threads trying to get elementos from an empty queue until there
will be elements in the queue. it can set a maximum number of elements in the queue so that thread are blocked if they try to
add elements over that number, having to wait until elements are extracted form the queue.

Classes LinkedBlockingQueue, ArrayBlockingQueue, SynchronousQueue, PriorityBlockingQueue and DelayQueue implement
interface BlockingQueue.

Concurrent Collections

Besides Queues, this package supplies Collection implementations designed for use in multithreaded contexts:
ConcurrentHashMap, ConcurrentSkipListMap, ConcurrentSkipListSet, CopyOnWriteArrayList, and CopyOnWriteArraySet. When
many threads are expected to access a given collection, a ConcurrentHashMap is normally preferable to a synchronized
HashMap, and a ConcurrentSkipListMap is normally preferable to a synchronized TreeMap. A CopyOnWriteArrayList is preferable
to a synchronized ArrayList when the expected number of reads and traversals greatly outnumber the number of updates to a
list.

ConcurrentMap is a subinterface of java.util.Map con with atomic operations to add / replace existing key,value pairs or to
add non existing key,value pairs. ConcurrentHashMap is the thread-safe version for HashMap.

Atomic variables

Package java.util.concurrent.atomic contains a small toolkit of classes that support lock-free thread-safe programming on
single variables. Instances of Atomic classes maintain values that are accessed and updated using methods otherwise available
for fields using associated atomic VarHandle operations.

Instances of classes AtomicBoolean, AtomicInteger, AtomicLong, and AtomicReference each provide access and updates to a
single variable of the corresponding type. Each class also provides appropriate utility methods for that type. For example, classes
AtomicLong and AtomicInteger provide atomic increment methods.

3.4.3 Executors, Callables & Future

Executors is an interface to manage thread pools. Thread pools manage a pool of worker threads. The thread pools contain a
work queue which holds tasks waiting to get executed.

A thread pool can be described as a collection of Runnable/Callable objects (work queue) and a connection of running threads.

These threads are constantly running and are checking the work query for new work. If there is new work to be done they
execute this Runnable/Callable.

Here you can check an illustrative example on how to use Executors

Executors: Ejemplo supermercado (https://jarroba.com/multitarea-e-hilos-en-java-con-ejemplos-ii-runnable-executors/)

We have used a Runnable object to define the tasks that are executed inside a thread. While defining tasks using Runnable is
very convenient, it is limited by the fact that the tasks can not return a result.

What if you want to return a result from your tasks?

https://jarroba.com/multitarea-e-hilos-en-java-con-ejemplos-ii-runnable-executors/

CFGS DAM 3.4 Alternative synchronization techniques | Process and Service Programming

IES Doctor Balmis 5 / 5

Well, Java provides a Callable interface to define tasks that return a result. A Callable is similar to Runnable except that it can
return a result and throw a checked exception.

Callable interface has a single method call() which is meant to contain the code that is executed by a thread.

Future interface has methods to obtain the result generated by a Callable object and manage its state. It represents the result
of an asynchronous computation.

The result can only be retrieved using method get() when the computation has completed, blocking if necessary until it is ready.

	3.4 Alternative synchronization techniques
	

	3.4 Alternative synchronization techniques
	3.4.1. Semaphores
	3.4.2. High level synchronization techniques
	Concurrent Queues
	Concurrent Collections
	Atomic variables

	3.4.3 Executors, Callables & Future

